Grundy chromatic number of the complement of bipartite graphs
نویسنده
چکیده
A Grundy k-coloring of a graph G, is a vertex k-coloring of G such that for each two colors i and j with i < j, every vertex of G colored by j has a neighbor with color i. The Grundy chromatic number Γ(G), is the largest integer k for which there exists a Grundy k-coloring for G. In this note we first give an interpretation of Γ(G) in terms of the total graph of G, when G is the complement of a bipartite graph. Then we prove that determining the Grundy number of the complement of bipartite graphs is an NP-Complete problem.
منابع مشابه
The distinguishing chromatic number of bipartite graphs of girth at least six
The distinguishing number $D(G)$ of a graph $G$ is the least integer $d$ such that $G$ has a vertex labeling with $d$ labels that is preserved only by a trivial automorphism. The distinguishing chromatic number $chi_{D}(G)$ of $G$ is defined similarly, where, in addition, $f$ is assumed to be a proper labeling. We prove that if $G$ is a bipartite graph of girth at least six with the maximum ...
متن کاملResults for grundy number of the complement of bipartite graphs
Our work becomes integrated into the general problem of the stability of the network ad hoc. Some, works attacked(affected) this problem. Among these works, we find the modelling of the network ad hoc in the form of a graph. Thus the problem of stability of the network ad hoc which corresponds to a problem of allocation of frequency amounts to a problem of allocation of colors in the vertex of ...
متن کاملResults on the Grundy chromatic number of graphs
Given a graph G, by a Grundy k-coloring of G we mean any proper k-vertex coloring of G such that for each two colors i and j, i < j , every vertex ofG colored by j has a neighbor with color i. The maximum k for which there exists a Grundy k-coloring is denoted by (G) and called Grundy (chromatic) number of G. We first discuss the fixed-parameter complexity of determining (G) k, for any fixed in...
متن کاملThe locating-chromatic number for Halin graphs
Let G be a connected graph. Let f be a proper k -coloring of G and Π = (R_1, R_2, . . . , R_k) bean ordered partition of V (G) into color classes. For any vertex v of G, define the color code c_Π(v) of v with respect to Π to be a k -tuple (d(v, R_1), d(v, R_2), . . . , d(v, R_k)), where d(v, R_i) is the min{d(v, x)|x ∈ R_i}. If distinct vertices have distinct color codes, then we call f a locat...
متن کاملMETA-HEURISTIC ALGORITHMS FOR MINIMIZING THE NUMBER OF CROSSING OF COMPLETE GRAPHS AND COMPLETE BIPARTITE GRAPHS
The minimum crossing number problem is among the oldest and most fundamental problems arising in the area of automatic graph drawing. In this paper, eight population-based meta-heuristic algorithms are utilized to tackle the minimum crossing number problem for two special types of graphs, namely complete graphs and complete bipartite graphs. A 2-page book drawing representation is employed for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Australasian J. Combinatorics
دوره 31 شماره
صفحات -
تاریخ انتشار 2005